

Renewable Energy

Volume 197, September 2022, Pages 776-789

Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades

Jakob Ilsted Bech ^a $\stackrel{\triangle}{\sim}$ Nicolai Frost-Jensen Johansen ^a, Martin Bonde Madsen ^b, Ásta Hannesdóttir ^a, Charlotte Bay Hasager ^a

Show more ✓

https://doi.org/10.1016/j.renene.2022.06.127 \nearrow Get rights and content \nearrow

Abstract

Rain erosion of <u>turbine blades</u> causes loss of production and expensive repairs in the <u>wind energy</u> sector. There is a common consensus, that the size of impacting rain drops has a governing effect on the added damage. However, the literature lacks systematic experimental studies on the topic. In the present paper the effects of <u>drop sizes</u> in Rain Erosion Tests (RET) are studied for a commercial <u>polyurethane</u> based top coat applied to glass fiber-epoxy specimens. The tests are conducted applying a whirling arm RET at <u>impact velocities</u> ranging from 90 to 150 m/s and with four different rain field setups generating mean droplet diameters of 0.76 mm, 1.90 mm, 2.38 mm and 3.50 mm respectively. The time to damage at the end of incubation is determined by inspection of photographs captured inline at regular intervals through the test.

Data sets of time to damage as function of local rotor velocity are extracted for each of the four different rain fields. From this data VQ curves (V for Velocity, Q for Quantity) are presented for different representations of quantity, namely specific impacts (DNV GL), specific impacts (ASTM) and accumulated impingement. The slope of the velocity-impingement (VH) curves vary with drop size.

We propose a drop size dependent empirical model for impingement (H) to damage as function of impact velocity (v), $H(v)=cv^{-m}$, where the scale parameter m and the shift parameter c are functions of the drop size.

The drop size-dependent impingement model is then applied for computing the expected <u>leading edge</u> lifetime of a virtual 15MW IEA reference turbine at 18 different meteorological stations in Northern Europe based on 10-min time series of rain intensity and <u>wind speeds</u> observed during several years. The drop size dependent model predicted on average 2.35 times longer lifetime compared to models based on the standard 2.38mm drop size. Comparing the sites, the model shows a factor 3 variation of added damage per meter of accumulated rain between sites because of differences in concurrent wind during the rain events.

Graphical abstract

Download: Download high-res image (511KB)

Download: Download full-size image

Introduction

Rain erosion of wind turbine blades is a prominent challenge for the wind energy industry [1,2]. When erosion occurs, it causes roughening of the blade surfaces, leading to reduction in aerodynamic efficiency, and potentially losses in annual energy production [3,4]. Wind turbine blades may need repeated repairs during a lifetime, and blade repair costs are high, particularly offshore, due to logistics [5]. Consequently, erosion needs to be considered when planning and operating wind parks, designing wind turbines and developing blade coatings and protection systems. The prevalence and progression of leading edge erosion at wind turbines in operation depend on rotor tip speeds, leading edge materials, rain and wind, and other environmental parameters. Erosion shows variability between sites, not only because of different turbines and blade coatings, but also because of different meteorological conditions, where concurrent values of precipitation and wind speed are the main meteorological drivers [6,7]. The drop size distribution of the impinging rain also play a significant role. The drop size distribution varies with rain intensity, but also with type of rain, temperature and humidity [8].

The correlation between drop size of impinging rain and added damage to coated composites is thus of great importance for modelling of rain erosion. Several models take into account the effect of drop size on impingement damage [[9], [10], [11], [12]]. However, no experimental validation and studies are found in literature.

In the current work, the whirling arm rain erosion test [13], is used to study the effect of drop size and impact speed on erosion damage. A new empirical drop size dependent impingement model is proposed and used to predict the expected blade lifetime for a virtual IEA Wind 15MW reference turbine [14] at 18 North European sites using site-specific rain intensity and wind speed time series.

The paper is structured as follows. Section 2 contains a description of the experimental methods and materials, the analysis of tests data, and the meteorological data and wind turbine characteristics used in the lifetime predictions. Section 3 describes different representations of impinging rain and resulting damage and analysis steps. Results are presented in Section 4, followed by Discussion in Section 5, Limitation and proposals for further research in section 6 and conclusion in section 7.

Access through your organization

Check access to the full text by signing in through your organization.

Access through your organization

Section snippets

Rain erosion test

The rain erosion tests are conducted with a rain erosion tester (RET) from the company R&D Test Systems A/S. This RET, Fig. 1, has a 3-bladed rotor with one test specimen per blade and a rotor diameter of approximately 2.5 m. The RET is capable of rotational speeds ranging from 500 to 1386 RPM, producing tip speeds from 63 to 172 m/s, and up to 1790 RPM/224 m/s in the aerospace configuration. The rain field is generated from an array of drop dispensing needles. The flow of water is adjustable ...

Representations of impinging rain

Rain erosion is commonly considered as a fatigue phenomenon. In classical fatigue theory, the load parameter is denoted *S* for stress, and *N* denotes the number of load cycles. A plot of sustained load cycles to failure as a function of applied stress is called an SN curve or Wöhler curve.

The simplest idealized rain field consists of spherical drops of equal diameter d, which are uniformly distributed in space. The volume concentration of water in the rain field, ψ , is calculated as follows: $\psi = \frac{I}{v_{st}}$...

Drop size measurements

The rain fields in the RET was characterized applying a disdrometer.

The drop sizes and fall velocities from three of the four needle and flow rate configurations are presented in Fig. 5. Relative frequency curves are shown to the right and above of the coordinate

system. The rain fields of G27 at 60l/h (green dots) and G30 at 85l/h (yellow dots) are relatively uniform with narrow distributions while the spray mode G27 at 105l/h (blue dots) shows a much broader distribution both in drop size ...

Discussion

Some of the methods, results and assumptions are discussed in the Results section. Additional assessment and considerations are given below. ...

Limitations and proposals for further research

- 1. The present study does not account for other meteorological parameters like UV and temperature and the environmental degradation of coating properties over time. Research on how environmental degradation affects VH curves over time would enable more realistic lifetime predictions. ...
- 2. The Palmgren-Miner assumption for linear damage accumulation is not validated for rain erosion. We do not consider the effects of sequences of loading with differing drop sizes and impact velocities. This could be ...

...

Conclusion

The present experimental study focuses on the importance of the drop sizes in rain erosion testing of leading edge protection systems for wind turbine blades. Through rain erosion testing of a modern high performance top coat on glass fiber/epoxy specimens with four different rain fields, representing average drop sizes from 0.76mm to 3.5mm we demonstrate, that the slopes of the VN and VH curves decrease with decreasing drop size, corresponding to an increasing exponent of the fitted power ...

Author contributions

JIB created the research concept and research plan for the specimen testing, developed the empirical models together with NF-JJ and calculated the lifetimes. NF-JJ described and compared the standard recommended practice ASTM and DNV-GL methods for specific impact and did the visual inspection analysis of the RET results. MBM ensured the RET was performed and conducted and collected disdrometer measurements in the RET. ÁH implemented the droplet size impingement models in the python code for ...

Data availability

The meteorological data used in this study are openly available in the Natural Environment Research Council's Data Repository for Atmospheric Science and Earth Observation (CEDA), the Danish Meteorological Institute's (DMI) Frie Data repository, the German Weather Service (DWD) Climate Data Center, and The Norwegian Meteorological Institute (NMI) based on data from MET Norway. ...

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. ...

Acknowledgements

This work was supported by the Innovation Fund Denmark - Grand Solutions projects, Grant 6154-00018B "EROSION" and grant 9067-00008B "Blade Defect Forecast". Meteorological data from the Open Data Server of Deutscher Wetterdienst, the Norwegian Meteorological Institute, the Meteorological data from Natural Environment Research Council and the Danish Meteorological Institute are acknowledged. We warmly thank Flemming Vejen for quality control and filtering of precipitation data at the DMI ...

Recommended articles

References (25)

R. Herring et al.

The increasing importance of leading edge erosion and a review of existing protection solutions

Renew. Sustain. Energy Rev. (2019)

L. Mishnaevsky et al.

Leading edge erosion of wind turbine blades: understanding, prevention and protection Renew. Energy (2021)

F. Papi et al.

Uncertainty quantification on the effects of rain-induced erosion on annual energy production and performance of a Multi-MW wind turbine

Renew. Energy (2021)

C. Hasager et al.

Assessment of the rain and wind climate with focus on wind turbine blade leading edge erosion rate and expected lifetime in Danish Seas

Renew. Energy (2020)

A.S. Verma et al.

A probabilistic rainfall model to estimate the leading-edge lifetime of wind turbine blade coating system

Renew. Energy (2021)

B. Amirzadeh et al.

A computational framework for the analysis of rain-induced erosion in wind turbine blades, part II: drop impact-induced stresses and blade coating fatigue life

J. Wind Eng. Ind. Aerod. (2017)

H.M. Slot et al.

Leading edge erosion of coated wind turbine blades: review of coating life models Renew. Energy (2015)

C. Bak et al.

The influence of leading edge roughness, rotor control and wind climate on the loss in energy production

J. Phys. Conf. Ser. (2020)

L. Mishnaevsky et al.

Costs of repair of wind turbine blades: influence of technology aspects Wind Energy (2020)

A. Shankar Verma et al.

A Probabilistic Long-Term Framework for Site-specific Erosion Analysis of Wind Turbine Blades: A Case Study of 31 Dutch Sites
(2021)

View more references

Cited by (45)

Rain droplet impact stress analysis for leading edge protection coating systems for wind turbine blades

2023, Renewable Energy

Show abstract ✓

A wind turbine blade leading edge rain erosion computational framework

2023, Renewable Energy

Citation Excerpt:

...Notwithstanding, these tests are argued to not reproduce the diversity of conditions experienced in the operation of turbine blades, which include intermittent rain, distributed raindrop sizes, and varying impact energy and droplet sizes. Some current research focused on these aspects are the studies of Bech et al. [33], who performed experimental tests to study the effect of drop size in rain erosion tests and lifetime prediction, or Verma et al. [34] who developed a probabilistic rainfall model to estimate the leading edge lifetime of coating systems in which the effects of rain intensity and droplet size are analysed. While rain erosion tests have been useful to comparatively analyse the performance of different protection systems, their application to lifetime analysis seems to be not so accurate for some researchers [8,35]....

Recent Progress in the Development and Evaluation of Rain and Solid Particle Erosion Resistant Coatings for Leading Edge Protection of Wind Turbine Blades ¬

2024, Polymer Reviews

Introducing a data-driven approach to predict site-specific leading-edge erosion from mesoscale weather simulations ¬

2023, Wind Energy Science

Atmospheric Drivers of Wind Turbine Blade Leading Edge Erosion: Review and Recommendations for Future Research 7

2022, Energies

A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems ¬

2022, Energies

View all citing articles on Scopus ↗

View full text

© 2022 Published by Elsevier Ltd.

All content on this site: Copyright © 2025 Elsevier B.V., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

